107 research outputs found

    An internal model approach to (optimal) frequency regulation in power grids with time-varying voltages

    Get PDF
    This paper studies the problem of frequency regulation in power grids under unknown and possible time-varying load changes, while minimizing the generation costs. We formulate this problem as an output agreement problem for distribution networks and address it using incremental passivity and distributed internal-model-based controllers. Incremental passivity enables a systematic approach to study convergence to the steady state with zero frequency deviation and to design the controller in the presence of time-varying voltages, whereas the internal-model principle is applied to tackle the uncertain nature of the loads.Comment: 16 pages. Abridged version appeared in the Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, MTNS 2014, Groningen, the Netherlands. Submitted in December 201

    Optimal pricing control in distribution networks with time-varying supply and demand

    Full text link
    This paper studies the problem of optimal flow control in dynamic inventory systems. A dynamic optimal distribution problem, including time-varying supply and demand, capacity constraints on the transportation lines, and convex flow cost functions of Legendre-type, is formalized and solved. The time-varying optimal flow is characterized in terms of the time-varying dual variables of a corresponding network optimization problem. A dynamic feedback controller is proposed that regulates the flows asymptotically to the optimal flows and achieves in addition a balancing of all storage levels.Comment: Submitted to 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS) in December 201

    Topological and Graph-coloring Conditions on the Parameter-independent Stability of Second-order Networked Systems

    Get PDF
    In this paper, we study parameter-independent stability in qualitatively heterogeneous passive networked systems containing damped and undamped nodes. Given the graph topology and a set of damped nodes, we ask if output consensus is achieved for all system parameter values. For given parameter values, an eigenspace analysis is used to determine output consensus. The extension to parameter-independent stability is characterized by a coloring problem, named the richly balanced coloring (RBC) problem. The RBC problem asks if all nodes of the graph can be colored red, blue and black in such a way that (i) every damped node is black, (ii) every black node has blue neighbors if and only if it has red neighbors, and (iii) not all nodes in the graph are black. Such a colored graph is referred to as a richly balanced colored graph. Parameter-independent stability is guaranteed if there does not exist a richly balanced coloring. The RBC problem is shown to cover another well-known graph coloring scheme known as zero forcing sets. That is, if the damped nodes form a zero forcing set in the graph, then a richly balanced coloring does not exist and thus, parameter-independent stability is guaranteed. However, the full equivalence of zero forcing sets and parameter-independent stability holds only true for tree graphs. For more general graphs with few fundamental cycles an algorithm, named chord node coloring, is proposed that significantly outperforms a brute-force search for solving the NP-complete RBC problem.Comment: 30 pages, accepted for publication in SICO

    A Polyhedral Approximation Framework for Convex and Robust Distributed Optimization

    Full text link
    In this paper we consider a general problem set-up for a wide class of convex and robust distributed optimization problems in peer-to-peer networks. In this set-up convex constraint sets are distributed to the network processors who have to compute the optimizer of a linear cost function subject to the constraints. We propose a novel fully distributed algorithm, named cutting-plane consensus, to solve the problem, based on an outer polyhedral approximation of the constraint sets. Processors running the algorithm compute and exchange linear approximations of their locally feasible sets. Independently of the number of processors in the network, each processor stores only a small number of linear constraints, making the algorithm scalable to large networks. The cutting-plane consensus algorithm is presented and analyzed for the general framework. Specifically, we prove that all processors running the algorithm agree on an optimizer of the global problem, and that the algorithm is tolerant to node and link failures as long as network connectivity is preserved. Then, the cutting plane consensus algorithm is specified to three different classes of distributed optimization problems, namely (i) inequality constrained problems, (ii) robust optimization problems, and (iii) almost separable optimization problems with separable objective functions and coupling constraints. For each one of these problem classes we solve a concrete problem that can be expressed in that framework and present computational results. That is, we show how to solve: position estimation in wireless sensor networks, a distributed robust linear program and, a distributed microgrid control problem.Comment: submitted to IEEE Transactions on Automatic Contro

    Topological and Graph-Coloring Conditions on the Parameter-Independent Stability of Second-Order Networked Systems

    Get PDF
    In this paper, we study parameter-independent stability in qualitatively heterogeneous passive networked systems containing damped and undamped nodes. Given the graph topology and a set of damped nodes, we ask if output consensus is achieved for all system parameter values. For given parameter values, an eigenspace analysis is used to determine output consensus. The extension to parameter-independent stability is characterized by a coloring problem, named the richly balanced coloring (RBC) problem. The RBC problem asks if all nodes of the graph can be colored red, blue, and black in such a way that (i) every damped node is black, (ii) every black node has blue neighbors if and only if it has red neighbors, and (iii) not all nodes in the graph are black. Such a colored graph is referred to as a richly balanced colored graph. Parameter-independent stability is guaranteed if there does not exist a richly balanced coloring. The RBC problem is shown to cover another well-known graph coloring scheme known as zero forcing sets. That is, if the damped nodes form a zero forcing set in the graph, then a richly balanced coloring does not exist, and thus parameter-independent stability is guaranteed. However, the full equivalence of zero forcing sets and parameter-independent stability holds true only for tree graphs. For more general graphs with few fundamental cycles, an algorithm, named chord node coloring, is proposed that significantly outperforms a brute-force search for solving the NP-complete RBC problem

    A distributed solution to the adjustable robust economic dispatch problem

    Get PDF
    The problem of maintaining balance between consumption and production of electric energy in the presence of a high share of intermittent power sources in a transmission grid is addressed. A distributed, asynchronous optimization algorithm, based on the ideas of cutting-plane approximations and adjustable robust counterparts, is presented to compute economically optimal adjustable dispatch strategies. These strategies guarantee satisfaction of the power balancing constraint as well as of the operational constraints for all possible realizations of the uncertain power generation or demand. The communication and computational effort of the proposed distributed algorithm increases for each computational unit only slowly with the number of participants, making it well suited for large scale networks. A distributed implementation of the algorithm and a numerical study are presented, which show the performance in asynchronous networks and its robustness against packet loss
    corecore